Scuba Diving2021-05-01T20:06:57-05:00

Scuba Diving

People have had a consuming interest in going beneath the sea for centuries...

The Different Types of Diving


Snorkeling is one of the easiest ways for humans to observe the underwater world. Using a mask and snorkel to swim along the surface of the water enables one to observe the aquatic life below. It is believed that snorkeling and freediving originated in 3000 B.C. where sponge farmers used hollow reeds to snorkel and dive for the sponges off of the Greek island, Crete. Modern day snorkelers require a mask and snorkel (a shaped tube that is partially submerged and used to breathe underwater), but fins are a common addition. This is generally a warm or tropical water activity, although an exposure suit may be worn to make the experience comfortable in more temperate waters.


Freediving is a form of diving in which one relies on the skill of holding a single breath while diving beneath the surface. A single breath is taken, and that breath is held underwater until the diver resurfaces. Unlike other kinds of diving, there’s no use of an underwater breathing device or scuba gear, with the exception of a mask and sometimes fins and/or weights. People participate in freediving recreationally, as a way of taking photos, while spear-fishing, and as a competitive sport. There are many open depth freediving disciplines including: Constant Weight, Free Immersion, Variable Weight, and No Limits. Depending on the discipline, weights may be used as well as freediving fins or a monofin. The most critical part of freediving is the way in which you breathe both before and after a dive as well as diving within your limits. These skills can be attained by taking a freediving course with a certified agency.

Recreational Scuba Diving

David scuba diving

MarineBio Founder, David Campbell, diving off Florida in 2005.

Recreational scuba diving or sport diving is a kind of diving done solely for pleasure. Recreational scuba divers are required to obtain an entry level open water certification where they gain the skills and knowledge needed to dive safely and responsibly. While divers are not required to gain additional certifications, specialized training is sometimes needed for different dive profiles including performing deep dives (past 60 ft) or in order to dive in overhead environments such as caves or shipwrecks. Recreational divers may not exceed a depth of 130 feet (40 m) and must use a depth-time profile in which a decompression stop is not required therefore making it possible for the diver to ascend to the surface without stopping. Recreational divers use a steel or aluminum diving cylinder of compressed air and scuba equipment including a mask, snorkel, fins, dive computer, buoyancy compensator device, regulator, weights, and depending on the temperature, an exposure suit. Many shops offer a “try scuba” class for anyone wanting to try it out before committing to the certification.

Scientific Diving

Scientific diving is the use of underwater diving techniques by scientists to perform work underwater in the direct pursuit of scientific knowledge. The legal definition of scientific diving varies by jurisdiction. Scientific divers are normally qualified scientists first and divers second, who use diving equipment and techniques as their way to get to the location of their fieldwork. The direct observation and manipulation of marine habitats afforded to scuba-equipped scientists have transformed the marine sciences generally, and marine biology and marine chemistry in particular. Underwater archeology and geology are other examples of sciences pursued underwater. Some scientific diving is carried out by universities in support of undergraduate or postgraduate research programs, and government bodies such as the United States Environmental Protection Agency and the UK Environment Agency carry out scientific diving to recover samples of water, marine organisms and sea, lake or riverbed material to examine for signs of pollution. – Wikipedia (visit for more info/resources)

“Scientific divers use specialized expertise to study the underwater environment and utilize scuba or other diving equipment as a tool. The primary role of a scientific diver is that of an observer and data gatherer. Common activities include visual measurements and counts of living organisms, collection of biological or physical samples, underwater surveys, photography, and placement of scientific equipment.

The Occupational Safety and Health Administration (OSHA) defines scientific diving as diving performed solely as a necessary part of a scientific, research, or educational activity by employees whose sole purpose for diving is to perform scientific research tasks and regulates these activities under an exemption to the commercial diving standard [29 CFR 1910 Subpart T].  The American Academy of Underwater Sciences (AAUS) promulgates standards for the conduct of scientific diving programs and provides a forum for members to share information.

Scientists and students who wish to use diving to accomplish their research or educational objectives must meet the minimum requirements for scientific divers as defined by the AAUS and presented in the UMaine Scientific Diving Manual. These standards require that divers pass stringent physical exams, meet additional training requirements, and maintain a sustained level of diving activity.” – University of Maine Scientific Diving Program

Technical Diving

Cave Diving in Cenotes, Mexico

Technical diving may be defined as diving in an environment in which there is no direct access to the surface. This could mean diving in an overhead environment such as a cave or wreck, or diving beyond the recreational diving limit of 130 feet (40m) and therefore requiring the diver to perform decompression stops upon ascent in order to off-gas nitrogen a

nd avoid decompression illness. There are many different gear configurations that technical divers may use depending on the environment and their dive profile. These configurations may include a dry suit, side mount, twinset, or rebreather and employ the use of variable gas mixtures. Technical diving requires a great deal of additional training and planning, and appropriately so as this level of diving inherently comes with higher risks.

Commercial Diving

Commercial divers are highly certified and extremely skilled dive professionals. As many are often working in dangerous circumstances, they are required to hold the proper certifications and training in order to meet the regulations of the local authority. The two most common commercial divers are offshore and inland. Offshore divers generally work in the gas and oil industry on offshore rigs as well as servicing ocean vessels, while inland divers provide services to docks, small boats, sewers and nuclear plants.

Open circuit scuba equipment is rarely used in commercial diving unless there is a dive site where using surface supplied equipment isn’t suitable and it’s necessary to carry dive equipment to a remote location. Surface supplied equipment is most commonly used with either a full face mask or diving helmet, and the diver receives breathing gas which is piped down from the surface through a long, flexible hose known as the diver’s “umbilical”. In addition to the umbilical, other hoses and cables supply the diver with services such as light sources and surface communication equipment. This same surface supplied equipment is used in saturation diving. Saturation dives are performed offshore and are necessary for divers working at a constant depth which otherwise would require long periods of decompression. These divers live for extended periods of time in a pressurized surface habitat know as a saturation system and are then transported under pressure to their work site in a closed bell. If the diver is working at extreme depths, helium-based breathing gas mixtures may be used in order to prevent oxygen toxicity and nitrogen narcosis which would impair or prevent the diver from performing the tasks at hand. Only once the job is complete is the diver then decompressed from the pressurized surface habitat. Decompressing once, as opposed to multiple times over several days, saves time as well as reduces the risk of decompression injury to the diver.

Military Diving

Military divers, being enlisted service members, must complete basic military training. Navy divers in particular are required to complete “Diver Preparation Course” (7 weeks) as well as “Second Class Dive School” at the Naval Diving and Salvage Training Center (15 weeks) in which divers are trained in air and mixed gas diving, underwater cutting and welding, demolition, ship maintenance, and more. After assignment, navy divers are responsible for tasks such as salvage and recovery, research, classified missions, and ship husbandry. Depending on the task at hand, military divers may employ the use of commercial diving equipment (helmet, surface supplied equipment, etc) or technical scuba diving equipment such as rebreathers and variable gas mixtures.

Diving Today

free divingToday, an estimated 500,000 new scuba divers are certified yearly in the US, new scuba magazines emerge, dive computers proliferate, new liveaboards ply the waters and scuba travel is transformed into a big business. In North America alone recreational diving is becoming multi-billion dollar industry.

PADI is the world’s largest recreational diving membership organization followed by NAUI and BSAC in the United Kingdom. A membership with PADI includes dive businesses, resort facilities, academic institutions, instructor trainers, dive educators, divers, snorkelers and other watersports enthusiasts. Professional PADI Members (dive centers, resorts, educational facilities, instructors, assistant instructors and divemasters) teach the vast majority of the world’s recreational divers, issuing nearly 946,000 certifications each year. PADI Professionals make underwater exploration and adventure accessible to the public while maintaining the highest industry standards for dive training, safety and customer service.

The Netherlands currently has the highest concentration of divers; one in every 7 dutch men or woman is a certified scuba diver. Recreational diving is tightly connected to exotic travel and both are experiencing an increasing popularity. At the same time there is expansion of “technical diving”, a diving by non-professionals who use advanced technology, including mixed gases, full face masks, underwater voice communication, propulsion systems, etc.

The Future

The future of diving is sunny. More and more people will take up scuba diving and the ones that already are will continue to explore new destinations and challenges such as deeper diving, technical diving, free-diving and cave-diving. The equipment is only getting better, easier to handle and lighter. Soon, we will all be diving on rebreathers. Many divers already are but with the amount of accidents that hit the press, it is not widely accepted as of yet.

The Early History of Diving

There are really four ‘mini-histories’ in the fascinating story of man’s desire to explore beneath the sea; they correspond to four separate methods of diving, of which scuba is but the latest.

  1. Breath-hold diving (free diving, skin diving). This earliest form of diving is still practiced for both sport and commercial purposes (e.g., ama divers of Japan and Korea, pearl divers of the Tuamoto Archipelago). The breath-hold diver’s compressible air spaces are squeezed by the increased water pressure throughout the dive. Each dive, limited by the individual’s tolerance for breath-hold and the risk of drowning from hypoxia, is usually a minute or less.
  2. Diving in a heavy-walled vessel. Heavy-walled vessels can maintain their internal atmosphere at or near sea level pressure (‘one atmosphere’ or ‘one atm’), and so prevent the surrounding water pressure from affecting the occupants. Such vessels include: the bathysphere, an unpowered hollow steel ball lowered from the mother ship by steel cable; the bathyscape, a bathysphere with buoyancy control so that cable is not needed for descent and ascent; and the submarine, which can travel great distances in any direction under its own power. All one-atmosphere vessels require a system to both provide fresh air (usually by adding oxygen to the existing air) and get rid of exhaled carbon dioxide (with soda lime, lithium hydroxide, or a similar compound that takes up CO2). A modern extension of the one-atmosphere vessel is the self-contained armored diving suit, flexible yet able to withstand pressures at depth: in effect, the diver becomes almost like a small submarine. With these one-atmosphere suits a diver can work at a depth of several hundred meters for hours.
  3. Diving with compressed air supplied from the surface. The diver is separated from the supply of fresh air, which is kept on the surface. Air reaches the diver through a long umbilical, which in its simplest form ends in a regulator and mouthpiece carried by the diver. In more sophisticated systems the umbilical leads into a dive suit or some larger enclosed space containing the diver. Devices in this category include caissons (huge spaces supplied with compressed air, employed mainly for bridge and tunnel work), underwater habitats used for saturation diving, diving bells, and rigid-helmet diving suits. In all these devices the diver breathes air at the same pressure as the surrounding water pressure, and so is at risk for decompression problems (bends, air embolism, etc.) if ascent is too fast. Special ‘high tech’ mixtures, such as hydrogen-oxygen, helium-oxygen and helium-nitrogen-oxygen, are used to dive deeper than possible with compressed air.
  4. Diving with compressed air or other gas mixture that is carried by the diver (scuba diving). There are two principle types of scuba: open and closed circuit. Open circuit vents all expired air into the water, and is the mode used in recreational diving. Closed circuit systems, in which exhaled air is re-breathed after carbon dioxide is absorbed and oxygen added, were widely used before open circuit became available, particularly by military divers who wished to avoid showing any air bubbles. As with divers using surface-supplied compressed air, scuba divers are at risk for decompression problems if they ascend without proper decompression. Helium-oxygen and other mixtures can be used to go deeper than possible with compressed air.

We will give you a chronological recounting of some important events in the four mini-histories of diving, with emphasis on scuba. There are many legends attached to diving history, some based on isolated woodcuts or the storyteller’s art. This list includes selected inventions, discoveries and achievements documented and accepted by historians as fact. Following each date is the type of diving to which the described event is most relevant. (Events that advanced knowledge of diving physics and decompression sickness are relevant to all compressed air diving).

Ancient manuscripts contain depictions of early divers. Century old artifacts imply that people dove for materials for jewelry such as pearls. Greek literature refers to early sponge divers. Herodotus (500 B.C.) tells the story of Scyllis, a Greek sailor, who used a reed to breathe as he cut the mooring lines of Persian ships. This interest pushed people to develop ever-improving methods of staying underwater for longer periods of time and at ever increasing depths.

Men and women have practiced breath-hold diving for centuries. Indirect evidence comes from thousand-year-old undersea artifacts found on land (e.g., mother-of-pearl ornaments), and depictions of divers in ancient drawings. In ancient Greece breath-hold divers are known to have hunted for sponges and engaged in military exploits. Of the latter, the story of Scyllis (sometimes spelled Scyllias; about 500 BC) is perhaps the most famous. As told by the 5th century BC historian Herodotus (and quoted in numerous modern texts).

“During a naval campaign the Greek Scyllis was taken aboard ship as prisoner by the Persian King Xerxes I. When Scyllis learned that Xerxes was to attack a Greek flotilla, he seized a knife and jumped overboard. The Persians could not find him in the water and presumed he had drowned. Scyllis surfaced at night and made his way among all the ships in Xerxes’s fleet, cutting each ship loose from its moorings; he used a hollow reed as snorkel to remain unobserved. Then he swam nine miles (15 kilometers) to rejoin the Greeks off Cape Artemisium.”

The desire to go under water has probably always existed: to hunt for food, uncover artifacts, repair ships (or sink them!), and perhaps just to observe marine life. Until humans found a way to breathe under water, however, each dive was necessarily short and frantic.

Ice Diver

How to stay under water longer? Breathing through a hollow reed allowed the body to be submerged, but it must have become apparent right away that reeds more than two ft long do not work well; difficulty inhaling against water pressure effectively limits snorkel length. Breathing from an air-filled bag brought under water was also tried, but it failed due to rebreathing of carbon dioxide.

In the 16th century people began to use diving bells supplied with air from the surface, probably the first effective means of staying under water for any length of time. The bell was held stationary a few ft from the surface, its bottom open to water and its top portion containing air compressed by the water pressure. A diver standing upright would have his head in the air. He could leave the bell for a minute or two to collect sponges or explore the bottom, then return for a short while until air in the bell was no longer breathable.

In 16th century England and France, full diving suits made of leather were used to depths of 60 ft. Air was pumped down from the surface with the aid of manual pumps. Soon helmets were made of metal to withstand even greater water pressure and divers went deeper. By the 1830s the surface-supplied air helmet was perfected well enough to allow extensive salvage work.

Starting in the 19th century, two main avenues of investigation – one scientific, the other technologic – greatly accelerated underwater exploration. Scientific research was advanced by the work of Paul Bert and John Scott Haldane, from France and Scotland, respectively. Their studies helped explain effects of water pressure on the body, and also define safe limits for compressed air diving. At the same time, improvements in technology – compressed air pumps, carbon dioxide scrubbers, regulators, etc., made it possible for people to stay under water for long periods.

A Brief Chronology of Diving

500 BC (breath-hold). Scyllis demonstrates practical use of breath-hold diving by performing military exploits for the King of Persia (see above).

1535 (surface air). Guglielmo de Lorena created and used what is considered to be the first modern diving bell. xxxxxxxx xxxxxxxxxxx xxxxxxxxxx xxxxxxx xxxxxxxx xxxxx xxxxxxx

1650 (surface air). Von Guericke develops the first effective air pump. With such a pump Robert Boyle is able to undertake experiments in compression and decompression of animals.

1667 (surface air; scuba). Robert Boyle, English physicist and originator of Boyle’s law, observes gas bubble in eye of viper that had been compressed and then decompressed. He writes: “I have seen a very apparent bubble moving from side to side in the aqueous humor of the eye of a viper at the time when this animal seemed violently distressed in the receiver from which the air had been exhausted.” This is the first recorded observation of decompression sickness or “the bends.”

1690 (surface air). Edmund Halley (of comet fame) patents a diving bell which is connected by a pipe to weighted barrels of air that can be replenished from the surface. Both barrel and bell (the latter with men in it) are lowered to depth; dives to over 60 ft for 90 minutes are recorded. Diving bells are thus shown to be practicable devices.

1715 (surface air). Englishman John Lethbridge builds a “diving engine,” an underwater oak cylinder that is surface-supplied with compressed air. Inside this device a diver can stay submerged for 30 minutes at 60 ft, while protruding his arms into the water for salvage work. Water is kept out of the suit by means of greased leather cuffs, which seal around the operator’s arms. The diving engine is claimed to be used successfully for many years.

Halley’s diving bell, late 17th century. Weighted barrels of air replenished the bell’s atmosphere. (U.S. Navy Diving Manual)

1776 (vessel). First authenticated attack by military submarine – American Turtle vs. HMS Eagle, New York harbor. xxxxxxxx xxxxxxxxxxx xxxxxxxxxx xxxxxxx xxxxxxxx xxxxx xxxxxxx

1788 (surface air). American John Smeaton refines diving bell; incorporates an efficient hand-operated pump to supply fresh compressed air and a non-return valve to keep air from going back up the hose when pumping stops. In 1790 Smeaton’s diving bell is used at Ramsgate Harbor, England, for salvage work. In another 10 years his bell is found in all major harbors.

Dive liveaboard in the Galapagos Islands during a MarineBio Expedition in 2002.

1823 (surface air). Charles Anthony Deane, an English inventor, patents a “smoke helmet” for fighting fires. At some point in the next few years it is used for diving as well. The helmet fits over a man’s head and is held on with weights; air is supplied from the surface through a hose. In 1828 Charles and his brother John Deane market the helmet with a “diving suit.” The suit is not attached to the helmet but only secured with straps; thus the diver cannot bend over without risking drowning. Even so, the apparatus is used successfully in salvage work, including the removal of some canon from the Royal George in 1834-35 (see also 1839).

1825 (scuba). “First workable, full-time SCUBA” is invented by an Englishman, William James. It incorporates a cylindrical belt around the diver’s trunk that serves as an air reservoir, at 450 psi. (It is unclear if this equipment was ever actually used for diving; see Marx 1990 and Brylske 1994 in the Bibliography). Other inventors about this time are also working on self-contained underwater breathing apparatus.

1837 (surface air). German-born inventor Augustus Siebe, living in England, seals the Deane brothers’ diving helmet (see 1823) to a watertight, air-containing rubber suit. The closed diving suit, connected to an air pump on the surface, becomes the first effective standard diving dress, and the prototype of hard-hat rigs still in use today. In his obituary Siebe is described as the father of diving.

Siebe’s early diving suit. (US Navy Diving Manual)

1839 (surface air). Seibe’s diving suit is used during salvage of the British warship HMS Royal George. The 108-gun ship sank in 65 ft of water at Spithead anchorage in 1783. The “Siebe Improved Diving Dress” is adopted as the standard diving dress by the Royal Engineers. During this salvage, which continues through 1843, the divers report suffering from “rheumatism and cold,” no doubt symptoms (among the first recorded) of decompression sickness. Also of note in this salvage is the first recorded use of the buddy system for diving.

1843 (surface air). As a result of experience gained salvaging the HMS Royal George, the first diving school is set up by the Royal Navy.

1865 (surface air, scuba). Frenchmen Benoit Rouquayrol and Auguste Denayrouse, a mining engineer and naval lieutenant, respectively, patent an apparatus for underwater breathing. It consists of a horizontal steel tank of compressed air (about 250-350 psi) on a diver’s back, connected through a valve arrangement to a mouthpiece. Patented as the “Aerophore,” the device delivers air only when the diver inhales, via a membrane that is sensitive to outside water pressure: in effect, the first demand regulator for underwater use. With this apparatus the diver is tethered to the surface by a hose that pumps fresh air into the low pressure tank, but he is able to disconnect the tether and dive with just the tank on his back for a few minutes. The aerophore is a forerunner of modern scuba equipment. The apparatus is used by the French and other navies for several years, and also appears prominently in Jules Verne’s 1870 novel, “20,000 Leagues Under The Sea.”

1873 (surface air). Dr. Andrew H. Smith presents his formal report as Surgeon to the New York Bridge Company, builders of the Brooklyn Bridge, about workers who suffered the bends after leaving the pressurized caisson. (The bends was a common problem among caisson workers. The condition also afflicted chief engineer Washington Roebling; he developed a severe, non-fatal case of decompression sickness, permanently impairing his health). By the time of Smith’s report, which recommends chamber recompression for future projects, all Brooklyn Bridge caisson work is completed. Smith’s report makes no mention of the true cause of decompression sickness: nitrogen bubbles.

1876 (scuba). An English merchant seaman, Henry A. Fleuss, develops the first workable, self-contained diving rig that uses compressed oxygen (rather than compressed air). In this prototype of closed circuit scuba, which is the forerunner of modern closed circuit scuba units used by military divers, carbon dioxide is absorbed by rope soaked in caustic potash, so that exhaled air can be re-breathed (no bubbles enter the water). Although depths are limited (pure oxygen is toxic below about 25 ft of sea water, a fact not known at the time), the apparatus allows for relatively long bottom times, up to three hours. In 1880 Fleuss’s apparatus is used by the famous English diver Alexander Lambert to enter a flooded tunnel and seal a hatchway door; the hatchway is 60 ft down and 1000 ft back into the tunnel.

Aerophore patented in 1865 by BenoitŒt Rouquayrol and Auguste Denayrouse.

1878 (surface air, scuba). Frenchman Paul Bert publishes La Pression Barometrique, a 1000-page work containing his physiologic studies of pressure changes. He shows that decompression sickness is due to formation of nitrogen gas bubbles, and suggests gradual ascent as one way to prevent the problem. He also shows that pain can be relieved by recompression. Bert provides the link between Boyle’s 17th century observation of decompression sickness in a viper and the symptoms of compressed air workers first recorded in the 19th century.

1908 (surface air, scuba). In 1906 the British Government asks John Scott Haldane, an eminent Scottish physiologist, to do research in the prevention of decompression sickness. Two years later Haldane, Arthur E. Boycott and Guybon C. Damant, publish their landmark paper on decompression sickness (from hyperbaric experiments done on goats). “The Prevention of Compressed-Air Illness” lays the groundwork for staged decompression. Tables based on this work are soon adopted by the British Royal Navy and later the United States Navy, and save many divers from the bends.

Tritonia - explored the Lusitania wreck in 19121912 (surface air, scuba). The US Navy tests tables published by Boycott, Damant and Haldane.

1917 (surface air). The US Bureau of Construction and Repair first introduces the Mark V Diving Helmet. When attached to a deep sea dress and umbilical, the Mark V becomes the underwater work horse for decades to come. It is used for “practically all salvage work undertaken during World War II… the MK V Diving Helmet becomes the standard US Navy Diving equipment until succeeded by the MK12 in 1980.” (US Navy Diving Manual). “So sound was its design that very few modifications were ever incorporated, and recent models vary only slightly from the 1917 version.” (Leaney 1993).

1920s (surface air, scuba). Research is begun in United States into the use of helium-oxygen mixtures for deep dives. To the beginning of World War II, the US maintains a monopoly on helium.

1924 (surface air; scuba). First helium-oxygen experimental dives are conducted by US Navy and Bureau of Mines. xxxxxxxx xxxxxxxxxxx xxxxxxxxxx xxxxxxx xxxxxxxx xxxxx xxxxxxx

1930 (vessel). William Beebe, a diving pioneer and “oceanographic naturalist” descends 1426 ft in a round, 4 ft 9 in bathysphere; it is attached to a barge by a 7/8 inch non-twisting steel cable to the mother ship. Of this dive Beebe later writes:

“There came to me at that instant [1426 ft down] a tremendous wave of emotion, a real appreciation of what was momentarily almost superhuman, cosmic, of the whole situation; our barge slowly rolling high overhead in the blazing sunlight, like the merest chip in the midst of the ocean, the long cobweb of cable leading down through the spectrum to our lonely sphere, where, sealed tight, two conscious human beings sat and peered into the abysmal darkness as we dangled in mid-water, isolated as a lost planet in outermost space.”

1930s (breath-hold). Guy Gilpatric, an American ex-aviator living in southern France, pioneers use of rubber goggles with glass lenses for skin diving. By the mid-1930s, face masks, fins, and snorkels are in common use. Fins are patented by a Frenchman, Louis de Corlieu, in 1933 (called “Swimming Propellers”) and later popularized worldwide by an American entrepreneur, Owen Churchill (see 1940). The modern mask (covering eyes and nose, as opposed to simple eye goggles), evolves from the ideas of various people, including the Russian Alec Kramarenko, and the Frenchmen Yves Le Prieur and Maxime Forjot. In 1934 Gilpatric writes of his Mediterranean exploits for The Saturday Evening Post, and in 1938 publishes The Complete Goggler, the first book on amateur diving and hunting. Among the book’s readers: a French naval lieutenant named Jacques Cousteau.

1933 (breath-hold). First sport divers club is started in California, called the Bottom Scratchers; a year later an amateur diving group, Club des Sous-l’Eau, is founded in Paris. A primary purpose of these and similar clubs is underwater spear fishing.

1933 (scuba). French navy captain Yves Le Prieur modifies the Rouquayrol-Denayrouse invention by combining a specially designed demand valve with a high pressure air tank (1500 psi) to give the diver complete freedom from restricting hoses and lines. The apparatus contains no regulator; the diver receives a breath of fresh air by opening a tap, while exhaled air escapes into the water under the edge of the diver’s mask. (In the late 1930s Cousteau used this apparatus but, as he wrote in The Silent World, “the continuous discharge of air allowed only short submersions.”) In 1935 Le Prieur’s SCUBA is adopted by the French navy.

1934 (vessel). On August 15 William Beebe and Otis Barton descend 3028 ft in a bathysphere near Bermuda. This dive sets a depth record that remains unbroken for 14 years.

1936 (scuba). Le Prieur founds the world’s first SCUBA diving club, called the “Club of Divers and Underwater Life.” In 1946, Le Prieur then invented a further improvement to his scuba set. Its fullface mask‘s front plate was loose in its seating and acted as a very big, and therefore very sensitive, diaphragm for a demand regulator: see Diving Regulator.

1938 (surface air, scuba). Edgar End and Max Nohl make the first intentional saturation dive, spending 27 hours at a depth of 101 ft in a Milwaukee hospital hyperbaric chamber. Decompression takes five hours and one of the divers (Nohl) suffers the bends.

1939 (vessel). The first completely successful rescue of submarine-trapped men is carried out. On May 23 the USS Squalus, a new 310-foot submarine, sinks in 243 ft of water during a checkout dive in the North Atlantic. Twenty-six of the crew die instantly in the flooded aft compartments. The forward, unflooded area holds 33 men (including the captain) with enough air and water to last several days. Within hours the largest submarine rescue in history is underway. By midnight of May 25 all 33 men are rescued by a new diving bell, the McCann-Erickson Rescue Chamber. The chamber fits over an escape hatch on the submarine; when the chamber and submarine hatches are opened the men enter the bell under one atmosphere of pressure. Four separate trips are used to rescue the men. The submarine is later salvaged and renovated, and enters World War II duty as the USS Sailfish.

1940 (breath-hold, scuba). First year of production of Owen Churchill’s swim fins. Initially, only 946 pairs are sold, but in later years production increases substantially, and tens of thousands are sold to the Allied forces.

1941-1944 (scuba). During World War II Italian divers, working out of midget submarines, use closed circuit scuba equipment to place explosives under British naval and merchant marine ships. Later in the war the British adopt this technology to sink German battleship Tirpitz.

1942-43 (scuba). Jacques-Yves Cousteau (a French naval lieutenant) and Emile Gagnan (an engineer for Air Liquide, a Parisian natural gas company) work together to redesign a car regulator that will automatically provide compressed air to a diver on his slightest intake of breath. (Prior to this date, all self-contained apparatus still in use supplied air continuously, or had to be manually turned on and off. For unclear reasons, the 19th century demand regulator of Rouquayrol-Denayrouse had long been abandoned.) Cousteau and Gagnan attach their new demand valve regulator to hoses, a mouthpiece and a pair of compressed air tanks. In January 1943 Cousteau tests the unit in the cold Marne River outside Paris. After a modification (placing the intake and exhaust valves at the same level), they patent the Aqua Lung….

Galapagos dive boat

Dive liveaboard in the Red Sea during a MarineBio Expedition in 2001.

French oceanographer and prizewinning film maker Jacques-Yves Cousteau, who revealed mysteries of the ocean that seemed more fantastic than science fiction and fought to protect the environment, died Wednesday in 1997 at age 87. Cousteau was born June 11, 1910, in Saint-Andre-de-Cubzac, a small town near Bordeaux. His father was a lawyer who traveled constantly. As a result, the boy was often on the move. He was a sickly child. Nonetheless, he learned to swim and spent hours at the beach. Formal schooling bored Cousteau; he was expelled from high school for breaking 17 of the school’s windows. His first dive was in Lake Harvey, Vt., in the summer of 1920. He was spending the season away from New York City, where he and his parents lived briefly. In 1930, Cousteau passed the highly competitive entrance examinations to enter France’s Naval Academy. He served in the navy and entered naval aviation school. A near-fatal car crash at age 26 denied him his wings, and he was transferred to sea duty, where he swam rigorously to strengthen badly weakened arms. The therapy had unintended consequences, as Cousteau writes in his 1953 book, The Silent World. “Sometimes we are lucky enough to know that our lives have been changed, to discard the old, embrace the new, and run headlong down an immutable course,” he wrote. “It happened to me … on that summer’s day, when my eyes were opened to the sea.”

Cousteau made his first underwater films in the mid-1940s and, with engineer Emile Gagnan, perfected the piece of equipment that he said enabled him to be a “manfish” — the aqualung, an underwater breathing apparatus that supplies oxygen to divers. In 1950, Cousteau bought the 400-ton former mine-sweeper Calypso. He converted it into a floating laboratory outfitted with the most modern equipment, including underwater television gear. He authored countless books and, in 1977, made the Cousteau Odyssey series for PBS.

Seven years later, the Cousteau Amazon series premiered on the Turner Broadcasting System. In all, his documentaries have won 40 Emmy nominations. In the 1970s, he formed the Cousteau Society, an environmental group based in Norfolk, Va. He had his critics. Some said he lacked scientific training. A biographer, Bernard Violet, said he mistreated animals during the filming of some documentaries, and that he once bought lobsters at a market in Marseilles and used them in a film about the Red Sea. Cousteau had no plans of slowing down. He was building Calypso II to replace the original, which then sank off Singapore last year.

The Gagnan-Cousteau regulator fundamentally altered diving. Its simple design and solid construction provided a reliable and low-cost unit for sport diving. Air Liquide put the equipment into commercial production, but it couldn’t keep up with the demand. Competitors tried to capture the growing market by producing imitations or making slight adjustments… The devices revolutionized man’s perception of the planet. Not unlike the Portuguese, Spanish, and Chinese explorers of the fifteenth century who doubled their knowledge of the size of the world, Cousteau and Gagnan helped open a vast portion of the globe to human exploration. They offered the opportunity for extensive undersea investigation to enthusiastic scientists, engineers and sportsmen.

1943 (scuba). Cousteau and two close friends, Frederic Dumas and Philippe Tailliez, make over five hundred dives with the aqualung, gradually increasing the depths to which they plunge. They have developed the first workable, open-circuit demand-type scuba apparatus. In October Dumas, in a carefully planned dive, descends to 210 ft in the Mediterranean Sea and experiences l’ivresse Des grandes profondeurs – rapture of the great depths.

1946 (scuba). Cousteau’s Aqua Lung is marketed commercially in France. (It is marketed in Great Britain in 1950, Canada in 1951 and the USA in 1952).

1947 (scuba). In August, Dumas makes a record dive with the Aqua Lung to 307 ft in the Mediterranean Sea. xxxxxxxx xxxxxxxxxxx xxxxxxxxxx xxxxxxx xxxxxxxx xxxxx xxxxxxx

1949 (vessel). Otis Barton descends in a modified bathysphere to a depth of 4500 ft, off the coast of California. xxxxxxxx xxxxxxxxxxx xxxxxxxxxx xxxxxxx xxxxxxxx xxxxx xxxxxxx

1950 (scuba). Despite the technical success of the aqua lung, it has yet to catch on in the US So far only 10 aqua lung units have been shipped to the US because, the distributor tells Cousteau, “the market is saturated.”

1951 (breath-hold, scuba). The first issue of Skin Diver Magazine appears in December – the first national magazine devoted to skin diving and scuba diving.

1950s (breath-hold, scuba). The sport of diving gradually changes from breath-hold to mainly scuba. Dive stores open up around the US

1953 (scuba). The Silent World is published. Written in English by Jacques Cousteau, with the assistance of Frederic Dumas, the book chronicles the development and early testing of the Cousteau-Gagnan Aqua Lung.

1950s (vessel). Famed Swiss balloonist August Picard turns his attention to the deep sea. With son Jacques, he pioneers a new type of vessel called the bathyscape (deep boat). The bathyscape is completely self-contained (not tethered to the surface), and designed to go deeper than any bathysphere. On February 15, 1954, off the coast of French West Africa, a bathyscaph containing Georges S. Houot and Pierre-Henri Willm exceeds Barton’s 1948 diving record, reaching a depth of 13,287 ft.

1954 A woman named Zale Parry had become one of the first scuba diving instructors in the country and one of the original three female instructors in the country. She became a national celebrity when she broke the deep dive record of 209 ft and went on to star in a TV series called “Kingdom of the Sea” and was also featured on the cover of Sports Illustrated in 1955.

1957 (scuba). First segment of Sea Hunt airs on television, starring Lloyd Bridges as Mike Nelson, underwater adventurer. The series inspires thousands of people to take up scuba diving.

1959 (scuba). YMCA begins the first nationally-organized course for scuba certification. “In 1844, industrialized London was a place of great turmoil and despair. For the young men who migrated to the city from rural areas to find jobs, London offered a bleak landscape of tenement housing and dangerous influences.

Twenty-two-year-old George Williams, a farmer-turned-department store worker, was troubled by what he saw. He joined 11 friends to organize the first Young Men’s Christian Association (YMCA), a refuge of Bible study and prayer for young men seeking escape from the hazards of life on the streets.”

1960 (vessel). On January 23, Jacques Picard and Navy lieutenant Don Walsh descend to 35,820 ft (10,916 meters, 6.78 miles) in the August Picard-designed, Swiss-built, US Navy-owned bathyscaph Trieste. This dive takes place in the Pacific Ocean’s Mariana Trench, 250 miles southwest of Guam, one of the deepest parts of the world ocean. Water pressure at this depth is 16,883 psi, temperature 37.4°F. Picard observes what he later calls “a flatfish at the very nadir of the earth” but no specimens can be collected. Trieste leaves the surface at 8:22 a.m., reaches maximum depth at 1:10 p.m. and surfaces at 4:30 p.m. No one will ever go deeper (unless, of course, oceanographers discover a deeper spot than the Mariana trench).


1960s (scuba). As accident rates for scuba divers climb, the first national training agencies are formed to train and certify divers; NAUI is formed in 1960, PADI in 1966.

1962 (surface air, scuba). Beginning in 1962 several experiments are conducted whereby people live in underwater habitats, leaving the habitat for exploration (using scuba equipment) and returning for sleeping, eating and relaxing. The habitats are supplied by compressed air from the surface. The first such experiment, Conshelf (Continental Shelf) One, takes place in September 1962. Under the watchful eye of Jacques Cousteau and his team, Albert Falco and Claude Wesley spend seven days under 33 ft of water near Marseilles, in a habitat they name Diogenes.

Diogenes was an enormous Aqua-lung into which Falco and Wesley retreated for warmth and food, sleep and hygiene. It was like the air bubble that a water spider takes down to sustain itself in its activities beneath the surface. For our men, the five daily hours outside were more important than the nineteen hours within (Cousteau 1963).

1963-1965 (surface air, scuba). In 1963, eight divers live in Conshelf Two under the Red Sea for a month. Other habitats of this period: Sealab I (1964); Sealab II (1965); and Conshelf Three (1965), in which former astronaut Scott Carpenter and other divers spend a month at 60 meters off the coast of southern France.

1967 (scuba). PADI, Professional Association of Diving Instructors, trains 3226 divers in its first year of operation. xxxxxxxx xxxxxxxxxxx xxxxxxxxxx xxxxxxx xxxxxxxx xxxxx xxxxxxx

1968 (scuba). On October 14 John J. Gruener and R. Neal Watson dive to 437 ft breathing compressed air, off coast of Grand Bahama Island. This record is not broken until 1990.

1970s (scuba). Important advances relating to scuba safety that began in the 1960s become widely implemented in the 1970s, including: adoption of certification cards to indicate a minimum level of training and as a requirement for tank refills rental of scuba equipment; change from J-valve reserve systems to non-reserve K valves and adoption of submersible pressure gauges; adoption of the buoyancy compensator and single hose regulators as essential pieces of diving equipment (replacing the dual hose, non-BC equipment initially in widespread use).

1980 (scuba). Divers Alert Network is founded at Duke University as a non-profit organization to promote safe diving. xxxxxxxx xxxxxxxxxxx xxxxxxxxxx xxxxxxx xxxxxxxx xxxxx xxxxxxx

1981 (scuba). Record 2250 foot-dive is made in a Duke Medical Center chamber. Stephen Porter, Len Whitlock and Erik Kramer live in the eight-foot-diameter spherical chamber for 43 days, breathing a mixture of nitrogen, oxygen and helium. They beat their own previous record set in 1980.

1983 (scuba). The first commercially available dive computer, the Orca Edge, is introduced. In the next decade many manufacturers market dive computers, and they become common equipment among recreational divers.

1985 (vessel). U.S.-French team headed by Woods Hole researcher Robert Ballard, using a remote controlled camera attached to the mother ship, finds the wreck of the Titanic. The ship sits broken into two sections at 12,500 ft depth, some 400 miles northeast of New York. On April 15, 1912, five days into its maiden voyage, Titanic hit an iceberg and sank in less than three hours. At the time she was the largest ship in the world. A total of 1522 passengers and crew died. Since 1985 both the US and France have revisited the site, and the French have recovered artifacts from the ship.

1993 (scuba). The 50th anniversary of the invention of modern scuba diving is celebrated around the world. PADI, the largest of the national training agencies, certifies 515,000 new divers worldwide.

Scott’s Popular Underwater Photos
Underwater Photography Guide


Stay up-to-date and informed…

Select list(s) to subscribe to

By submitting this form, you are consenting to receive marketing emails from: MarineBio Conservation Society, 2926 Barker Cypress Rd, Suite 10208, Houston, TX, 77084, https://www.marinebio.org/. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

OceanSeaMarine Life News

The MarineBio News Blog >-<°°>-< View Daily Marine Life Newsfeeds
Join our very popular Facebook group ~ The Largest Group of Marine Biologists/Conservationists Online

Also follow us on Instagram, Twitter, Pinterest and YouTube!

Dive In For More
Find out more >

Canada Launches Satellite Technology That Identifies ‘Dark Vessels’ Illegally Catching Billions of Fish

by GNN
Find out more >

The MarineBio Conservation Society >-<°°>-< Share this!


  1. Anonymous November 19, 2020 at 5:25 pm - Reply

    Wow! ??

  2. Claudia October 28, 2020 at 6:45 pm - Reply

    Cool ?


Have a comment, question or suggestion? Feel free to submit comments to start or join discussions. Please keep in mind that all comments are moderated and your email address will NOT be published. Get your free Gravatar (Globally Recognized Avatar) before commenting to show your personal image instead of the default.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Go to Top